Integrating Task Allocation, Planning, Scheduling, and Adaptive Resource
Management to Support Autonomy in a Global Sensor Web

John S. Kinnebrew, Gautam Biswas,

Nishanth Shankaran, and Douglas C. Schmidt

EECS Department & ISIS,
Vanderbilt University,
Nashville, TN 37203, USA
john.s.kinnebrew @vanderbilt.edu

Abstract

NASA’s Earth Science Vision calls for a global sensor
web comprised of heterogeneous platforms with on-board
information processing, capable of orchestrating real-time
collaborative operations with other platforms and ground
stations. Such a global sensor web will be a system of
systems, including many distributed real-time embedded
(DRE) systems, such as multi-satellite formations. Individ-
ual systems of the sensor web must collect and analyze large
quantities of data via sequences of heterogeneous data col-
lection, manipulation, and coordination tasks to meet spec-
ified goals for earth science applications. In large DRE
systems, such as those composing a global sensor web, the
sheer number of available components often poses a com-
binatorial planning problem for identifying component se-
quences to achieve specified goals. Moreover, the dynamic
nature of these systems requires runtime management and
modification of deployed components.

We present the design of the Multi-agent Architecture for
Coordinated Responsive Observations which includes two
novel services contributing to the design and deployment
of autonomous, predictable, and high performance DRE
systems that operate in dynamic and uncertain environ-
ments: (i) the Spreading Activation Partial Order Planner
(SA-POP) that performs decision-theoretic planning and
scheduling using a spreading activation network to capture
the probabilistic functional relationships between tasks (im-
plemented as components) and goals, and (ii) the Resource
Allocation and Control Engine (RACE), which is an open-
source adaptive resource management framework built atop
standards-based QoS-enabled component middleware. We
illustrate the effectiveness of our approach in the face of
changing operational conditions, workloads, and resource
availability, in the context of salient Earth science missions.

Dipa Suri
Lockheed-Martin Space Systems Company
Advanced Technology Center
3251 Hanover Street,

Palo Alto, CA. 94304
dipa.suri@lmco.com

1. Introduction

Remote sensing missions for Earth Science provide a
wealth of information to help scientists understand the
dynamics of our planet. Conventional approaches use a
stove-pipe operational model, such as each spacecraft or
in situ sensor cluster commanded by, and transmitting data
to, large dedicated ground operations centers. These ap-
proaches, however, introduce untenable latencies in devel-
oping data products that hinder model building and refine-
ment. Moreover, the inherent communication lag and po-
tentially limited bandwidth necessitates autonomous plan-
ning and resource allocation at a local level to effectively
achieve goals under rapidly evolving environmental and
system conditions. To address these limitations, NASA’s
Earth Science Vision calls for a global sensor web com-
prised of heterogeneous platforms with on-board informa-
tion processing, capable of orchestrating real-time collab-
orative operations with other platforms and ground sta-
tions [7].

Many of the platforms comprising the sensor web will
be distributed, real-time embedded (DRE) systems, such
as spacecraft and airborne systems. Modern DRE systems
implement task sequences, such as data processing, using
component middleware [6], which automates remoting, life-
cycle management, system resource management, deploy-
ment, and configuration. However, in large-scale DRE sys-
tems, the sheer number of component sequences often poses
a combinatorial deployment problem, i.e., mapping com-
ponents to computing nodes [14]. Moreover, the dynamic
nature of the operations require runtime management and
modification of deployments [5]. At the level of individual
platforms (e.g. individual satellites and ground-based sen-
sor installations) these problems necessitate a system with
the ability to make resource allocation and control decisions
at runtime. More effective solutions to this problem pro-

vide greater autonomy with the inclusion of planning and
replanning capabilities to ensure the task sequences being
executed keep in sync with changing mission goals and re-
source availability.

In addition to comprising a vast number of sensors and
platforms, a global sensor web will also have many “users”
(e.g. weather modeling and prediction systems, disaster
recognition and management systems, and individual sci-
entists and scientific institutions) requesting access to sen-
sor data and control of the sensor platforms. The scale and
scope of such a sensor web requires an efficient, scalable
system of control for allocation of high-level task requests
to available resources.

To support the needs of future Earth Science Missions,
we are developing a Multi-agent Architecture for Coordi-
nated, Responsive Observations (MACRO). MACRO pro-
vides a powerful infrastructure for enabling the deployment
and operation of a sensor web. Agents using component
middleware and novel services, such as SA-POP [10] for
supporting dynamic planning/scheduling and RACE [19]
for resource allocation/control, provide the necessary local
autonomy to react to changing conditions, while efficiently
achieving mission goals. At the global, “mission level,”
agents representing the sensor web users negotiate for sen-
sor web access with agents representing the available sensor
platforms through a variant of the well-known contract net
protocol [21] for task allocation. This architecture helps
overcome current limitations by facilitating real-time, reac-
tive data acquisition, analysis, fusion, and distribution, i.e.,
a “smart sensing” capability in the sensor web context.

2. Architecture

MACRO employs a set of intelligent agents operating on
a quality of service (QoS)-enabled component middleware
framework to ensure that the objectives of a remote sensing
mission are met, e.g., planning for science operations, sci-
ence data acquisition, processing, and dissemination. The
design of the agents is based on a combination of mature ter-
restrial standards defined by the Object Management Group
(OMG) (www.omg.org), the Foundation for Intelligent
Physical Agents (FIPA) (www. fipa.org), and the Open
Geospatial Consortium (www . opengeospatial.org).
The implementation of the agents is based on a state-of-the-
art component middleware implementation of the CORBA
Component Model (CCM) to ensure interoperability across
heterogeneous computing platforms (e.g., various proces-
sors, operating systems, and programming languages), re-
duce development costs, and improve the software’s robust-
ness and scalability [22].

Recent research has identified a number of general or-
ganizational structures employed by multi-agent systems,
each with its own benefits and drawbacks [11, 8]. However,

the scale and scope of a global sensor web does not easily
lend itself to any single organizational paradigm. Rather
than use a single one-size-fits-all organizational solution,
MACRO employs multiple organization structures as ap-
propriate to the design requirements of various aspects of
the system.

User
Agent

Mission V== .*7 Mission
Agent Broker Agents Agent
(Contract Net
Negolitions

Mission User
Agent Agent
SA-POP, RACE
| SensorNet ™o
ensor Ne
< |
. |
Devits Resource

Mode Group

Op String
Op String

Feedback

Figure 1. System architecture of MACRO

As illustrated in Figure 1 there is a broad, two-level hi-
erarchy of control. The higher level, or “mission level,”
is comprised of user agents, mission agents, and broker
agents. User agents provide the high-level tasks/goals to
be achieved by the system. As such, the user agents are in-
terfaces to mission scientists or wrappers for legacy systems
that can request sensor web tasks, such as weather model-

ing and simulation. The mission agents then perform these
tasks with the resources under their control. Specifically,
each mission agent controls a sensor net as seen in Figure 1.
This hierarchy is a natural result of the sensor web’s struc-
ture in which there are many low-level DRE systems with
limited computational resources that are supported and di-
rected by relatively few computing facilities with far greater
resources. Moreover, this hierarchical structure can take ad-
vantage of the efficiency gained through task decomposition
and separation of concerns [8]. The disadvantage of a hier-
archical structure is the potential for brittleness and bottle-
necks [8]. In MACRO, these disadvantages are mitigated by
the fact that the top level of the hierarchy is a group of mis-
sion agents rather than a single agent, and this group can be
dynamically expanded as additional sensor nets are added
to the global sensor web.

Each sensor net controlled by a mission agent is com-
posed of resource groups. A resource group is a natural
grouping of computational resources that are directly con-
nected to device nodes (i.e. sensors and actuators). For
example, a spacecraft may have multiple processors with
a range of connected device nodes, but it can logically be
viewed as a single set of shared resources. Similarly a clus-
ter of in situ ground sensors connected by a bus to one or
more processing nodes would be a single resource group.
The key characteristic of a resource group is that it is a set of
shared device nodes and computational resources. Within
the resource group, the agents are organized by a federation
paradigm. There is a single agent, the exec agent, acting as
the intermediary between the other resource group agents
and the controlling mission agent.

In general, the resource group agents are defined by their
roles and responsibilities. The particular set of agents used
in a resource group depends on the physical system itself.
For example, a spacecraft requires guidance and navigation,
while an in sifu ground cluster does not. The central agent,
which exists in any resource group, is the exec agent [23].
The exec agent acts as a mediator between the other re-
source group agents and the controlling mission agent. It
also arbitrates conflicting resource requests between other
agents in its resource group and is responsible for monitor-
ing overall resource group health (e.g. fault detection).

Other resource group agents are included as appropri-
ate to the platform. For example, a spacecraft may in-
clude a comm agent, GNC agent, and science agent(s) [23].
The comm agent manages all aspects of communication be-
tween the spacecraft and external facilities. This will en-
tail control of the communication hardware and services,
which is particularly important in a limited telemetry band-
width situation. A GNC (“Guidance Navigation & Con-
trol””) agent is responsible for spacecraft guidance, naviga-
tion, and attitude control through use of appropriate sen-
sors and actuators. Finally, one or more science agents are

responsible for decision-making associated with achieving
science objectives, such as choice of sensor configurations
and data processing.

All MACRO agents communicate using messages based
on the FIPA Agent Communication Language (ACL) [4].
It has been noted that the FIPA ACL is ill-suited for some
forms of agent interaction, such as argumentation [13].
However, the MACRO architecture primarily consists of co-
operative, trusted agents, and as such, their interactions cor-
respond to a rational-choice view of agent society for which
FIPA ACL was designed.

While FIPA ACL defines the high-level message struc-
ture, it does not require the use of any particular language
or ontology for the message content. Further, one of the
major issues in ACL design is the specification of an on-
tology with “broad coverage, [relevance] to its domain,
and [extensibility]” [3]. The MACRO ontology addresses
this issue by conforming to the current Open Geospatial
Consortium (OGC) (www.opengeospatial.org) ex-
perimental SensorML standard [2] for describing sensors,
data processing, and location information. MACRO agents
use message content in the SensorML format to effectively
communicate capabilities, tasks, and data. This also al-
lows MACRO to support interoperability with other exter-
nal tools and systems based on the OGC Sensor Web En-
ablement standards.

3. MACRO Contract Net

One of the major problems addressed by MACRO is the
allocation of resources (sensors and computational power
for data analysis) to sensor web users such as weather mod-
eling and disaster prediction/management systems. The
contract net protocol [21] is one of the earliest and
most well-studied algorithms for resource-allocation/task-
distribution in multi-agent systems. It has the advantages
of conceptual simplicity, a relatively straightforward imple-
mentation, and proven effectiveness in real-world applica-
tions.

The interactions in a basic contract net implementation
are based on a simple marketplace auction metaphor. When
an agent needs a task completed that it can not, or does not
wish to, do itself, it announces it to all other agents or a
subset of agents known to be interested in this type of task.
For this interaction the announcing agent is called the “man-
ager” and the other agents are potential “contractors.” Over
any period of time, each potential contractor may receive
multiple task announcements, all of which contain a time
deadline for receipt of bids. The potential contractor ranks
task announcements by a known preference heuristic and
may reply to the highest ranked announcement with a bid
to the appropriate manager. The decision and timing of a
contractor’s bidding is decided by its own timeout clock and

potentially a cutoff value for its interest in an announcement
(below which it will not bid at all). The manager ranks
incoming bids by its own preference heuristic and, before
the deadline, awards the contract to the contractor with the
highest ranked bid.

One of the major advantages of the contract net proto-
col is its ability to accommodate a heterogeneous collec-
tion of agents with both different resources and different
priorities for bidding and choosing bids. However, this can
also introduce significant communication and computation
overhead for matching capabilities of agents with task an-
nouncements. To minimize this overhead, MACRO intro-
duces broker agents that act as intermediaries between man-
agers and contractors. Contractors (mission agents) inform
an assigned broker of their interest in task announcements
by specifying their sensor capabilities and geographic cov-
erage. Mission agents with mobile resources (e.g. space-
craft or airborne platforms) regularly update their broker
agent with current and near-term geographic coverage infor-
mation. This allows broker agents to match task announce-
ments to the subset of interested mission agents, thereby re-
ducing communication overhead. Further, all broker agents
are registered with standard middleware naming and trad-
ing services, providing some fault tolerance in the event of
an individual broker agent malfunction. The small set of
broker agents also performs some load balancing amongst
themselves in assigning each mission or user agent to a par-
ticular broker.

Another extension to the basic contract net protocol in
MACRO is the use of currency in bidding and contracts.
MACRO broker agents provide and enforce currency allo-
cation to user agents over time. Currency is allocated by a
share of total resources and unused currency has a variable
decay over time. This is intended to allow an approximation
of fair share access to the sensor web by the pre-determined
share for each registered user agent. Further, it provides
some additional security because mission and broker agents
are trusted agents with well known rules for currency as-
signment and cost calculations. Thus user agents, which can
be designed independently of the MACRO mission and bro-
ker agents, can be controlled to some extent by the MACRO
designers. With well-chosen mission agent cost functions
(in terms of computational and sensor workload) and task
preference heuristics, this may also help provide load bal-
ancing in the sensor web.

While fair share access to sensor web resources is de-
sired in baseline MACRO operation, prediction and man-
agement of natural disasters is also an important, although
less common, use case. Disaster management is accom-
modated in MACRO by allowing priority task announce-
ments from pre-specified user agents. All applicable mis-
sion agents are required to bid on priority task announce-
ments, overriding the normal fair share operation of the con-

tract net.

4. Middleware and Services

To perform efficiently in a distributed, heterogeneous
computing environment, MACRO agents rely on the un-
derlying component middleware. The CORBA Component
Model provides a way to logically bundle interfaces into
service families and specify the configuration and deploy-
ment of objects as complete applications. This results in
flexible, scalable implementations that are easier to adapt
and maintain. The component model was introduced as a
solution where components encapsulate application “busi-
ness logic” and interact via well-defined ports. Standard
container mechanisms provide an execution environment
for components with common operating requirements and
a reusable/standard infrastructure configures and deploys
components throughout a distributed system.

The Component Integrated ACE ORB (CIAO) and
the Deployment and Configuration Engine (DAnCE) are
open source implementations of the OMG’s Lightweight
CORBA Component Model (CCM) [17] and Deployment
and Configuration (D&C) [16] specifications. CIAO and
DAnNCE are built atop The ACE ORB (TAO). TAO is a
highly configurable, open-source, real-time CORBA Ob-
ject Request Broker (ORB) that implements key patterns to
meet the demanding QoS requirements of distributed, real-
time embedded systems. CIAO extends TAO by abstract-
ing key QoS concerns (such as priority models, thread-to-
connection bindings, and timing properties) into elements
that can be configured declaratively via metadata (such as
standards for specifying, implementing, packaging, assem-
bling, and deploying components). Defining and configur-
ing QoS properties as metadata disentangles code for con-
trolling these concerns unrelated to functionality from code
that implements the application logic, thus making MACRO
development more flexible and productive. DAnCE extends
TAO by allowing application deployers to specify how ex-
isting components should be packaged, assembled, and cus-
tomized into reusable services.

In addition to the component middleware infrastructure,
MACRO agents require the ability to create and execute
plans. Most agent architectures include planning as an in-
tegral part of an individual agent’s reasoning mechanisms.
However, the need for scheduling and awareness of shared
resource utilization in a MACRO resource group compli-
cates this picture. Rather than directly intertwining plan-
ning with the meta-level reasoning of MACRO agents, they
use a (re)planning and scheduling service to efficiently meet
these needs. This service is provided by the Spreading Ac-
tivation Partial Order Planner (SA-POP) [10]. To effec-
tively implement their plans, MACRO agents also require
the ability to (re)allocate and manage components as mis-

sion goals and resource availability change. This service is
provided by the Resource Allocation and Control Engine
(RACE) [19], whose operation, in conjunction with SA-
POP, is illustrated in Figure 2.

Task
Network

Y
Spreading L
Activation |© — T T — —
Planning JQ— EESQheduling
=

Task Deploymefil / Mission
Strijgs Map Feedltack

¥
RACE/ReDaC

Deployment, Configuration & Control

- Mechanism

1.

Allocation Control

-
I
I
I
I

Uniform interface to deploy I
& manage components Appligation

|
|
|
| Algorithms —____ .| Algorithms
|
Res Iurc:e
Utilization Performance
Data Component Middleware Infrastructure Data
| (CIAO/DANCE) |
| |
! Deploy and manage }
: components |
| |
| _| Resource Application | |

7| Monitors TR (AL Monitors |

Figure 2. SA-POP and RACE architecture

5. Spreading Activation Partial Order Planner

When an agent provides a desired goal, SA-POP eval-
uates current/predicted conditions and resource availability
to generates a plan of high expected utility as an operational
string. An operational string is primarily a partially or-
dered set of tasks to accomplish a goal. Each goal specifica-
tion is mapped onto one operational string, which includes
the control (ordering) dependencies, the data (producer/-
consumer) dependencies, and required start and end times
for tasks, if any. The operational strings also indicate ap-
propriate implementations, e.g. components, for each task,
as there may be more than one.

For SA-POP to choose appropriate tasks to achieve
goals, it must know which preconditions must be satis-
fied for each task, its input/output data streams, if any, and
the pertinent effects that result from its operation. Uncer-
tainty as to whether tasks will produce the desired output or
effects is captured via conditional probabilities associated
with the preconditions and effects of a task. Together, the
input/output definitions, preconditions/effects, and related
conditional probabilities define the functional signature of
the task.

The functional signature of each task, and consequently
all task dependencies, are captured in a rask network. A task
network is a directed graph that represents both tasks and
conditions (preconditions, data input, effects, and data out-
put) with the links encoding the requisite probability infor-
mation. In general, the task network can be constructed by a
domain expert using domain-specific modeling tools, such
as the Generic Modeling Environment (GME) [9]. With
the task network, current values for conditions, and a goal,
SA-POP’s spreading activation mechanism can compute ex-
pected utility values for each task. However, to ensure oper-
ational strings do not violate resource constraints, SA-POP
also requires knowledge of the expected resource consump-
tion and execution time of each possible implementation of
a task, i.e., its resource signature. SA-POP uses a system-
specific task map to associate each task with a set of imple-
mentations and their individual resource signatures.

To allow greater flexibility in making deployment and
runtime control decisions, SA-POP is designed to impose
a minimum of constraints in an operational string. To fa-
cilitate this, we adopt a modified Partial Order Causal
Link (POCL) design [20] in the generation of operational
strings. The least commitment strategies typical of par-
tial order planning allow SA-POP to impose relatively few
constraints compared to other popular planning techniques,
such as state space search and constraint satisfaction based
planners.

SA-POP leverages information from the partial order
planning process when applying resource constraints and
finding resource violations. In DRE systems, such as an
earth science satellite, many data manipulation tasks oper-
ate over long time windows with a required start time, but
the end time is dynamically determined by ongoing anal-
ysis of the data. This lack of defined end time limits the
effectiveness of many popular scheduling approaches such
as timetabling [18], edge-finding [1], and classical energetic
reasoning [12].

Rather than primarily relying on start/end time window
manipulation, SA-POP leverages the ordering constraints
common to partial order plans. These constraints are used
to create precedence graphs [12], which partition all other
tasks into sets based on their ordering with respect to a par-
ticular task under consideration. SA-POP then applies a
modified version of Laborie’s energy precedence and bal-
ancing constraint propagation techniques [12] to add ap-
propriate timing and ordering constraints to the operational
string. SA-POP generates operational strings using mu-
tually recursive planning and scheduling algorithms with
backtracking. Each step in the generation of an operational
string involves four mutually recursive algorithms: (1)
Plan, which first chooses an open condition (i.e. a goal or
subgoal unsatisfied in the current plan), then chooses a task
that can achieve the open condition, (2) ResolveThreats,

which resolves causal link threats by promotion or demo-
tion, (3) Schedule, which chooses an implementation for
the task instance and propagates resource constraints to con-
strict time windows and impose necessary scheduling links,
and (4) ResolveResources, which adds scheduling links to
resolve potential resource violations. The first two algo-
rithms, Plan and ResolveThreats, correspond to traditional
partial order planning. The other two algorithms, Sched-
ule and ResolveResources, perform resource constrained
scheduling through constraint propagation and a search to
resolve potential resource violations.

6. Resource Allocation and Control Engine

The architecture of RACE and its interplay with SA-
POP is illustrated in Figure 2. RACE performs autonomous
resource (re)allocation and (re)configuration of QoS set-
tings of components that are part of the operational strings
generated by SA-POP such that the QoS requirements
of the operational strings are met. RACE is built atop
of CIAO and DAnCE, which are open-source (see www .
dre.vanderbilt.edu) implementations of the OMG
Lightweight CCM [17], Deployment and Configuration
(D&C) [16], and Real-time CORBA [15] specifications.
RACE provides a range of resource allocation and control
algorithms that use middleware deployment and configura-
tion mechanisms to allocate resources to operational strings
and control system performance after operational strings
have been deployed. In particular, it uses Resource Mon-
itors and ApplicationQoSMonitors, which are implemented
as CCM components, to track system resource utilization
and application QoS respectively.

RACE’s algorithms determine how to (re)deploy an ap-
plication specified by operational strings and ensure desired
QoS requirements are met, while maintaining resource uti-
lization within desired bounds at all times. The allocation
algorithms determine the initial component deployment by
determining the best mapping of these components to the
appropriate target nodes based on the availability of system
resources. For example, an allocation algorithm could ap-
portion CPU resources to components in such a way that
avoids saturating these resources. Likewise, RACE’s con-
trol algorithms adapt the execution of an operational strings’
components at runtime in response to changing environ-
ments and variations in resource availability and/or demand.
For example, a control algorithm could (1) modify an ap-
plication’s current operating mode, (2) dynamically update
component implementations, and/or (3) redeploy all or part
of an operational string’s components to other target nodes
to meet end-to-end QoS requirements.

RACE uses mechanisms provided by the underlying
middleware to perform the allocation and control decisions
made by its algorithms. For example, RACE uses standard

mechanisms defined by the Lightweight CORBA Compo-
nent Model (CCM) [17] to (1) (re)deploy and (re)configure
application components, (2) transition application compo-
nents from idle states to operational states and monitor the
performance of the DRE system, and (3) modify compo-
nents and/or operational strings to realize the adaptation de-
cisions of control algorithms.

A A\
SA-POP Mission Goals

Operational Strlngs

3: Deployment &
Conflguratlon Plan

P s Deployment Manager \‘\\ CIAO/DANCE
4 °_4: Run-time ¥ (Reldeploy / modify

] Control Plan components
2 Algorthm | S S
Manager A\ & "__ Resource
n P Domain @, _ Utilization
H b ,7‘
i i " Resources/;
A i e 7
llocators Controllers = o~
\ Configurators / Application
§Q§}<;§¢ Hlstorlan QoS
A pllcatlon 4 Target

QoS ‘ ‘
Qos Managers Manager
—I—

System Resource Utilizatior

Figure 3. Architecture of RACE

As shown in Figure 3 the RACE architecture consists of
the following entities that are implemented as CCM com-
ponents using CIAO and deployed via DAnCE:

Resource Monitors are CCM components that track re-
source utilization in a domain. One or more Resource-
Monitors are associated with each domain resource, such
as CPU and memory utilization monitors on each node and
network bandwidth utilization monitors on interconnects.

ApplicationQoSMonitors are CCM components that
track the performance of application components by observ-
ing QoS properties, such as throughput and latency. One
or more ApplicationQoSMonitors are associated with each
type of application component.

The TargetManager [19] is a CCM component defined
in the D&C specification [16] that receives periodic re-
source utilization updates from ResourceMonitors within a
domain. It uses these updates to track resource usage of all
resources within the domain. The TargetManager provides
a standard interface for retrieving information pertaining to
resource consumption of each component or assembly in
the domain, as well as the domain’s overall resource utiliza-
tion.

The DeploymentManager is an assembly of CCM com-
ponents that encapsulates and coordinates one or more al-
location and control algorithms. This manager deploys
assemblies by allocating resources to individual compo-
nents in an assembly. After assemblies are deployed, the
DeploymentManager manages the performance of (1) op-

erational strings and (2) domain resource utilization. This
manager ensures desired performance of the operational
strings by performing the following actions to the compo-
nents that make up the operational strings: (1) (re)allocating
resources to the component, (2) modifying component pa-
rameters such as execution mode, and/or (3) dynamic re-
placing the component implementations.

7. Discussion and Lessons Learned

This section summarizes our experiences combining the
decision-theoretic, resource-constrained planning of SA-
POP with the component allocation and runtime manage-
ment of RACE to produce an efficient and scalable archi-
tecture for autonomous operation of DRE systems in the
context of MACRO. SA-POP produces partial-order plans
as operational strings that contain sufficient information to
be instantiated with parameterized component implementa-
tions without violating coarse-grained resource constraints.

In a satellite formation, for example, an instantiation of
SA-POP on each satellite considers the computational re-
sources, such as CPU, memory, and communication band-
width to be monolithic, discrete resources. In actuality,
there may be multiple nodes with individual CPU and mem-
ory capacities. However, each task generally only uses a
small fraction of these resources, so the course-grained re-
source constraints used by SA-POP help ensure that RACE
can find valid deployments for components on the real node
resources.

Through the association of multiple functionally equiva-
lent implementations for each task in the task map, RACE
can find valid (re)allocations by substituting the original
task components suggested by SA-POP with ones that are
more resource friendly under the current conditions. In the
unusual case that no such allocation is possible, RACE pro-
vides feedback to SA-POP indicating its failure to find a
valid allocation due to one or more resource constraints. If
this occurs, SA-POP generates a new operational string that
uses less of a particular resource, but may have a lower ex-
pected utility, without requiring a repetition of the spreading
activation.

Semi-autonomous operation of MACRO resource
groups with limited computing capacity requires efficient
algorithms to handle the combinatorial problems of plan-
ning, scheduling, and allocation. The loose coupling of
SA-POP and RACE through a feedback loop, enables
operational string generation as a search through a smaller
space of potential resource-committed plans. The search
is computationally less intensive than if resources were
considered at the fine-grained node level.

Similarly, RACE does not have to consider the cascad-
ing task choices of planning and scheduling to find a valid
allocation, so its search space is also limited to a manage-

able size. Moreover, SA-POP only considers the feasibil-
ity of resource allocation in generating operational strings,
while RACE can consider the harder resource optimization
problem, but limits it to a given operational string. The
limited size and complexity of the search spaces used in
SA-POP and RACE, as well as the flexibility afforded by
the task map, yields an architecture that can operate with
limited computational resources, while scaling to relatively
large planning and allocation problems without becoming
intractable.

In generating the operational string from mission goals,
SA-POP takes into account domain uncertainty by prefer-
ring tasks of high expected utility. Rather than attempting
the often intractable problem of finding operational strings
with the highest overall expected utility, SA-POP’s gener-
ates operational strings using a greedy approximation algo-
rithm. The greedy choice of high expected utility tasks still
yields a robust application as specified by the resulting oper-
ational string, but does not require the much greater search
time needed to find the optimal solution.

For efficient sensor web operation, individual resource
groups require some degree of autonomy to recognize and
react to changes in local conditions. To this end, RACE
monitors application performance and domain resource uti-
lization using its Application Monitors and Resource Mon-
itors after operational string deployment. If the perfor-
mance of an operational string falls below its QoS require-
ment, RACE’s control algorithms take corrective actions to
achieve the specified QoS requirement.

For example, a control algorithm could (1) modify input
parameters of one or more parameterized components of the
operational string, (2) dynamically update task implementa-
tions from the choices available in the task map, and/or (3)
redeploy all or part of an application’s components to other
target nodes to meet end-to-end QoS requirements. These
actions help ensure that the QoS requirements of each oper-
ational string are met and resource utilization is maintained
within specified bounds. If these control adaptations can
not correct/prevent a QoS or resource violation, however,
RACE notifies SA-POP, triggering replanning.

In addition to varying levels of resource utilization, run-
time changes can occur in the environmental/system con-
ditions represented in the task network. RACE continu-
ously monitors these conditions and provides feedback on
changes to SA-POP. SA-POP uses this information to incre-
mentally update the probability values of conditions in the
network, running forward propagation as necessary. Most
changes correspond to the expected behavior of applica-
tions specified by operational strings. When a critical, un-
expected change does occur, it can be handled more quickly
because the task network is up-to-date. Critical changes are
those that render the current application deployment non-
functional for the achievement of some mission (sub)goal

condition. In these cases, SA-POP would produce a revised
operational string by performing plan repair (i.e. by contin-
uing from the original operational string generation with an
open condition corresponding to the critical change).

Revisions to mission goals, e.g., due to on-board data
analysis or revisions from mission agents, are other runtime
changes that may require modifications to deployed applica-
tions. The new/changed utility values for goals are inserted
into the task network and the spreading activation mecha-
nism is used to update it. These changes generally occur
only for a small subset of the mission goals and thus only
need be propagated through a relatively small portion of the
full network. Moreover, only backpropagation of utility is
necessary since probability values already forward propa-
gated through the network are unchanged.

With the updated task network, a new operational string
is generated. In this case, the operational string genera-
tion usually takes much longer than for plan repair because
it must be completely regenerated in order to take advan-
tage of the changed expected utilities. Fortunately, revised
mission goals rarely render the deployed operational string
nonfunctional for all goals. In fact, unless the goals have
changed drastically, the current operational string is prob-
ably still of high expected utility. As such, an immediate
response to goal revisions is not as critical as in the cases
necessitating plan repair, so the time to extract a completely
new operational string is insignificant in practice.

8. Concluding remarks

In this paper, we described the design of the Multi-
agent Architecture for Coordinated Responsive Observa-
tions (MACRO). The organization of MACRO agents pro-
vides an efficient framework for distributed sensor web
operation and control. Further, combining the decision-
theoretic (re)planning with resource constraints of SA-POP
with the RACE framework for resource allocation and con-
trol enables autonomy in the individual systems that make
up the sensor web. We showed how SA-POP and RACE
can together facilitate autonomous operation by responding
to dynamic changes through (re)planning of task sequences
and the (re)deployment/(re)configuration of components.
RACE and SA-POP are open-source software that can be
obtained from deuce.doc.wustl.edu/Download.
html as part of the CIAO middleware.

References

[1] P. Baptiste and C. L. Pape. Edge-Finding Constraint Propa-
gation Algorithms for Disjunctive and Cumulative Schedul-
ing. In Proceedings of the Fifteenth Workshop of the U.K.
Planning Special Interest Group, 1996.

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

M. Botts et al. Sensor Model Language (SensorML) for In-
situ and Remote Sensors. Technical Report OpenGIS Spec-
ification Document 04-019r2, Open Geospatial Consortium,
November 2004.

B. Chaib-draa and F. Dignum. Trends in Agent Communica-
tion Language. Computational Intelligence, 18(2):89-101,
2002.

FIPA. Communicative Act Library Specification. Technical
Report Technical Report SC00037J, Foundation for Intelli-
gent Physical Agents, December 2002.

X. Gu and K. Nahrstedt. Dynamic QoS-Aware Multime-
dia Service Configuration in Ubiquitous Computing Envi-
ronments. In Proceedings of IEEE International Conference
on Distributed Computing Systems, 2002.

G. T. Heineman and B. T. Councill. Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-
Wesley, Reading, Massachusetts, 2001.

P. Hildebrand, W. Wiscombe, M. Albjerg, J. Booth,
R. Miller, T. Miller, M. Mlynczak, G. Paules, D. Peter-
son, C. Raymond, et al. NASA Earth Science Vision 2030:
Working Group Report. Technical report, NASA Tech.
Report NP-2003-2-611-GSFC. Available at http://neptune.
gsfc. nasa. gov/vision, 2004.

B. Horling and V. Lesser. A survey of multi-agent organi-
zational paradigms. The Knowledge Engineering Review,
19(04):281-316, 2005.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
Integrated Development of Embedded Software. Proceed-
ings of the IEEE, 91(1):145-164, Jan. 2003.

J. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and
D. Schmidt. A Decision-Theoretic Planner with Dynamic
Component Reconfiguration for Distributed Real-time Ap-
plications. In Proceedings of the Sth International Sympo-
sium on Autonomous Decentralized Systems (ISADS), Se-
dona, Arizona, March 2007.

M. Kolp, P. Giorgini, and J. Mylopoulos. Multi-agent ar-
chitectures as organizational structures. Autonomous Agents
and Multi-Agent Systems, 13(1):3-25, 2006.

P. Laborie. Algorithms for Propagating Resource Con-
straints in Al Planning and Scheduling: Existing Ap-
proaches and New Results. Artif. Intell., 143(2):151-188,
2003.

P. McBurney, S. Parsons, and M. Wooldridge. Desiderata
for agent argumentation protocols. Proceedings of the First
International Joint Conference on Autonomous Agents and
Multiagent Systems: Part 1, pages 402—409, 2002.

M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving
Availability in Large, Distributed Component-Based Sys-
tems Via Redeployment. In 3rd International Working Con-
ference on Component Deployment (CD 2005), Grenoble,
France, 2005.

Object Management Group. Real-time CORBA Specifica-
tion, OMG Document formal/05-01-04 edition, Aug. 2002.

Object Management Group. Deployment and Configuration
Adopted Submission, OMG Document mars/03-05-08 edi-
tion, July 2003.

Object Management Group. Light Weight CORBA
Component Model Revised Submission, OMG Document
realtime/03-05-05 edition, May 2003.

(18]

[19]

(20]

(21]

(22]

(23]

C. L. Pape. Implementation of Resource Constraints in
ILOG SCHEDULE: A Library for the Development of
Constraint-Based Scheduling Systems. Intelligent Systems
Engineering, 3(2):55-66, 1994.

N. Roy, N. Shankaran, and D. C. Schmidt. Bulls-Eye: A Re-
source Provisioning Service for Enterprise Distributed Real-
time and Embedded Systems. In Proceedings of the 8th In-
ternational Symposium on Distributed Objects and Applica-
tions, Montpellier, France, Oct/Nov 2006.

D. Smith, J. Frank, and A. Jonsson. Bridging the Gap Be-
tween Planning and Scheduling. Knowledge Engineering
Review, 15(1):61-94, 2000.

R. Smith. The Contract Net Protocol: High-Level Commu-
nication and Control in a Distributed Problem Solver. IEEE
Transactions on Computers, 29(12):1104—-1113, 1980.

D. Suri, A. Howell, D. Schmidt, G. Biswas, J. Kinnebrew,
W. Otte, and N. Shankaran. A Multi-agent Architecture for
Smart Sensing in the NASA Sensor Web. In Proceedings
of the 2007 IEEE Aerospace Conference, Big Sky, Montana,
March 2007.

D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte,
D. Schmidt, and G. Biswas. Onboard Processing using
the Adaptive Network Architecture. In Proceedings of the
Earth-Sun Science Technology Conference, College Park,
MD, June 2006.

